Journal of Approximation Theory

A note on the equivalences between the averages and the K-functionals related to the Laplacian

Feng Dai ${ }^{\mathrm{a}, *, 1}$, Kunyang Wang ${ }^{\text {b, }}{ }^{\text {, }}$
${ }^{\text {a }}$ Department of Mathematical and Statistical Sciences, CAB 632, University of Alberta, Edmonton, Alberta, T6G 2G1, Cannda
${ }^{\mathrm{b}}$ Department of Mathematics, Beijing Normal University, Beijing, 100875, China

Received 29 October 2002; accepted in revised form 1 January 2004
Communicated by Vilmos Totik

Abstract

For \mathbb{R}^{d} or \mathbb{T}^{d}, a strong converse inequality of type A (in the terminology of Ditzian and Ivanov (J. Anal. Math. 61 (1993) 61)) is obtained for the high order averages on balls and the K-functionals generated by the high order Laplacian, which answers a problem raised by Ditzian and Runovskii (J. Approx. Theory 97 (1999) 113). © 2004 Elsevier Inc. All rights reserved.

MSC: Primary 41A25; 41A50

Keywords: K-functionals; High order averages; Strong converse inequalities of type A

1. Introduction and main result

Given a function $f \in L\left(\mathbb{R}^{d}\right)$, its Fourier transform is defined by

$$
\widehat{f}(\xi)=\int_{\mathbb{R}^{d}} f(x) \mathrm{e}^{-i x \xi} d x, \quad \xi \in \mathbb{R}^{d} .
$$

[^0]For a positive integer ℓ, the ℓ th order Laplacian Δ^{ℓ} is defined, in a distributional sense, by

$$
\left(\Delta^{\ell} f\right)^{\wedge}(\xi)=(-1)^{\ell}|\xi|^{2 \ell} \widehat{f}(\xi)
$$

Associated with the operator Δ^{ℓ}, there is a K-functional

$$
\begin{equation*}
K_{\Delta, \ell}\left(f, t^{2 \ell}\right)_{p}:=\inf \left\{\|f-g\|_{p}+t^{2 \ell}\left\|\Delta^{\ell} g\right\|_{p}: g, \Delta^{\ell} g \in L^{p}\left(\mathbb{R}^{d}\right)\right\} \tag{1}
\end{equation*}
$$

where $t>0,1 \leqslant p \leqslant \infty$ and $\|\cdot\|_{p}$ denotes the usual L^{p}-norm on \mathbb{R}^{d}.
Let V_{d} denote the volume of the unit ball of \mathbb{R}^{d}. For $t>0$ and a locally integrable function f, we define the average $B_{t}(f)$ by

$$
B_{t}(f)(x)=\frac{1}{t^{d} V_{d}} \int_{\left\{u \in \mathbb{R}^{d}:|u| \leqslant t\right\}} f(x+u) d u
$$

and the ℓ th order average $B_{\ell, t}(f)$ (for a given positive integer ℓ) by

$$
\begin{equation*}
B_{\ell, t}(f)(x)=\frac{-2}{\binom{2 \ell}{\ell}} \sum_{j=1}^{\ell}(-1)^{j}\binom{2 \ell}{\ell-j} B_{j t}(f)(x) \tag{2}
\end{equation*}
$$

We remark that for $\ell>1$ the operator $B_{\ell, t}$ was first introduced by Ditzian and Runovskii in [DR, p. 117, (2.6)].

For more background information we refer to [Di1,Di2,DR,Di-Iv,To].
Our main goal in this paper is to prove the following strong converse inequality of type A (in the terminology of [Di-Iv]), which was conjectured in [DR, p. 138].

Theorem 1. Let $\ell \in \mathbb{N}, 1 \leqslant p \leqslant \infty$ and $f \in L^{p}\left(\mathbb{R}^{d}\right)$. Then

$$
\left\|f-B_{\ell, t}(f)\right\|_{p} \approx K_{\Delta, \ell}\left(f, t^{2 \ell}\right)_{p}
$$

where $t>0$ and

$$
A(f, t) \approx B(f, t)
$$

means that there is a $C>0$, independent off and t, such that

$$
C^{-1} A(f, t) \leqslant B(f, t) \leqslant C A(f, t)
$$

Theorem 1 for $\ell=1$ was proved in [DR, p. 133, Theorem 6.1] and for $d=1, \ell$ small, as it was indicated in [DR, p. 138], can be obtained by following the technique developed in [Di-Iv]. For $\ell \geqslant 2$ and $d \geqslant 2$, the following strong converse inequality of type B (in the terminology of [Di-Iv]) was obtained in [DR, p. 127, Theorem 4.8 and p. 131, Theorem 5.7]:

$$
\begin{equation*}
K_{\Delta, \ell}\left(f, t^{2 \ell}\right)_{p} \approx\left\|f-B_{\ell, t}(f)\right\|_{p}+\left\|f-B_{\ell, t \rho}(f)\right\|_{p}, \quad 1 \leqslant p \leqslant \infty \tag{3}
\end{equation*}
$$

for some $\rho>1$. The proof of our Theorem 1 will be based on this equivalence.
We remark that with a slight modification of the proof below a similar result for the periodic case can also be obtained.

2. Basic lemmas

The following lemma can be easily obtained by a straightforward computation.
Lemma 1. Let $\chi_{B(0,1)}(x)$ denote the characteristic function of the unit ball

$$
B(0,1):=\left\{x=\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}: x_{1}^{2}+\cdots+x_{d}^{2} \leqslant 1\right\}
$$

V_{d} denote the volume of $B(0,1)$ and let $I(x)=\frac{1}{V_{d}} \chi_{B(0,1)}(x)$. Then

$$
\begin{equation*}
\widehat{I}(x)=\gamma_{d} \int_{0}^{1} \cos (u|x|)\left(1-u^{2}\right)^{\frac{d-1}{2}} d u \tag{4}
\end{equation*}
$$

with

$$
\begin{equation*}
\gamma_{d}=\left(\int_{0}^{1}\left(1-u^{2}\right)^{\frac{d-1}{2}} d u\right)^{-1} \tag{5}
\end{equation*}
$$

Lemma 2. Let $B_{\ell, t}$ be defined by (2) and $I(x)$ the same as in Lemma 1 .Thenfor $f \in L\left(\mathbb{R}^{d}\right)$,

$$
\begin{equation*}
\widehat{B_{\ell, t}(f)}(x)=m_{\ell}(t|x|) \widehat{f}(x), \tag{6}
\end{equation*}
$$

where

$$
\begin{align*}
m_{\ell}(|x|) & =\frac{-2}{\binom{2 \ell}{\ell}} \sum_{j=1}^{\ell}(-1)^{j}\binom{2 \ell}{\ell-j} \widehat{I}(j x) \tag{7}\\
& =1-A_{\ell}(|x|) \tag{8}\\
A_{\ell}(|x|) & =\gamma_{d} \frac{4^{\ell}}{\binom{2 \ell}{\ell}} \int_{0}^{1}\left(1-u^{2}\right)^{\frac{d-1}{2}}\left(\sin \frac{u|x|}{2}\right)^{2 \ell} d u \tag{9}
\end{align*}
$$

and γ_{d} is given by (5).

Proof. For $t>0$, we write

$$
I_{t}(x)=\frac{1}{t^{d}} I\left(\frac{x}{t}\right) .
$$

Then from definition (2), it follows that

$$
B_{\ell, t}(f)(x)=\frac{-2}{\binom{2 \ell}{\ell}} \sum_{j=1}^{\ell}(-1)^{j}\binom{2 \ell}{\ell-j}\left(f * I_{j t}\right)(x),
$$

which implies (6) and (7). Substituting (4) into (7) yields

$$
\begin{equation*}
m_{\ell}(|x|)=\frac{-2 \gamma_{d}}{\binom{2 \ell}{\ell}} \sum_{j=1}^{\ell}(-1)^{j}\binom{2 \ell}{\ell-j} \int_{0}^{1} \cos (j u|x|)\left(1-u^{2}\right)^{\frac{d-1}{2}} d u \tag{10}
\end{equation*}
$$

which, together with the following identity

$$
\left(\sin \frac{x}{2}\right)^{2 \ell}=\frac{\binom{2 \ell}{\ell}}{4^{\ell}}+\frac{2}{4^{\ell}} \sum_{j=1}^{\ell}(-1)^{j}\binom{2 \ell}{\ell-j} \cos j x
$$

gives (8) and (9). This completes the proof.

Lemma 3. Let $m_{\ell}(u)$ be the same as in Lemma 2. Then for $j \in \mathbb{Z}_{+}$and $u \geqslant 0$,

$$
\left|\left(\frac{d}{d u}\right)^{j} m_{\ell}(u)\right| \leqslant C_{\ell, j}\left(\frac{1}{u+1}\right)^{\frac{d+1}{2}}
$$

where $C_{\ell, j}>0$ is independent of u.

Proof. By identity (10), it suffices to show that for $j \in \mathbb{Z}_{+}$and $u \geqslant 0$,

$$
\begin{equation*}
\left|\left(\frac{d}{d u}\right)^{j} \int_{0}^{1} \cos (u v)\left(1-v^{2}\right)^{\frac{d-1}{2}} d v\right| \leqslant C_{j}\left(\frac{1}{u+1}\right)^{\frac{d+1}{2}} \tag{11}
\end{equation*}
$$

We use formula (4.7.5) of [An-As-R, p. 204] to obtain that

$$
\begin{equation*}
\int_{0}^{1} \cos (u v)\left(1-v^{2}\right)^{\frac{d-1}{2}} d v=2^{\frac{d-2}{2}} \sqrt{\pi} \Gamma\left(\frac{d+1}{2}\right) \frac{J_{\frac{d}{2}}(u)}{u^{\frac{d}{2}}} \tag{12}
\end{equation*}
$$

where $J_{\alpha}(u)$ denotes the Bessel function of the first kind of order α. Now (11) is a consequence of (12) and the following well-known estimates on Bessel functions:

$$
\begin{aligned}
\frac{d}{d u} u^{-\alpha} J_{\alpha}(u) & =-u^{-\alpha} J_{\alpha+1}(u), \quad[\text { An-As-R, (4.6.2), p. 202], } \\
J_{\alpha}(u) & =O\left(\frac{1}{(u+1)^{\frac{1}{2}}}\right) \quad \text { for } u \geqslant 0 \quad \text { [An-As-R, (4.8.5), p. 209], } \\
J_{\alpha}(u) & =O\left(u^{\alpha}\right) \text { as } u \rightarrow 0 \quad \text { [An-As-R, (4.7.6), p. 218]. }
\end{aligned}
$$

This concludes the proof.

Lemma 4. Suppose that a is a C^{∞}-function defined on $[0, \infty)$ with the property that for $u \geqslant 0$ and $0 \leqslant j \leqslant d+1$,

$$
\begin{equation*}
\left|\left(\frac{d}{d u}\right)^{j} a(u)\right| \leqslant C(a)\left(\frac{1}{1+u}\right)^{d+1} \tag{13}
\end{equation*}
$$

For $t>0$, define the operator T_{t}, in a distributional sense, by

$$
\left(T_{t}(f)\right)^{\wedge}(\xi)=a(t|\xi|) \hat{f}(\xi), \quad \xi \in \mathbb{R}^{d}
$$

Then for $1 \leqslant p \leqslant \infty$ and $f \in L^{p}\left(\mathbb{R}^{d}\right)$,

$$
\sup _{t>0}\left\|T_{t}(f)\right\|_{p} \leqslant C_{p, a}\|f\|_{p}
$$

This lemma is well known (see [St]), but for the sake of completeness, we give its proof here.

Proof. Let

$$
\begin{equation*}
K(x)=\int_{\mathbb{R}^{d}} e^{i x \xi} a(|\xi|) d \xi \tag{14}
\end{equation*}
$$

Since

$$
T_{t}(f)(x)=f * K_{t}(x)
$$

with

$$
K_{t}(x)=\frac{1}{t^{d}} K\left(\frac{x}{t}\right),
$$

it is sufficient to prove

$$
\begin{equation*}
\|K\|_{L^{1}\left(\mathbb{R}^{d}\right)}<\infty \tag{15}
\end{equation*}
$$

By (14), we get for $\gamma=\left(\gamma_{1}, \ldots, \gamma_{d}\right) \in \mathbb{Z}_{+}^{d}$,

$$
(-x)^{\gamma} K(x)=\int_{\mathbb{R}^{d}} e^{i x \xi}\left(\frac{\partial}{\partial \xi}\right)^{\gamma}(a(|\xi|)) d \xi
$$

which, by (13), implies

$$
\left|x^{\gamma} K(x)\right| \leqslant C \int_{\mathbb{R}^{d}} \frac{d \xi}{(1+|\xi|)^{d+1}}<\infty
$$

with $|\gamma|=\gamma_{1}+\cdots+\gamma_{d} \leqslant d+1$. Now taking the supremum over all γ with $|\gamma|=d+1$ yields

$$
|K(x)| \leqslant \frac{C}{|x|^{d+1}}
$$

which, together with the fact that $K \in C\left(\mathbb{R}^{d}\right)$, implies (15) and so completes the proof.

3. Proof of Theorem 1

The upper estimate

$$
\left\|f-B_{\ell, t}(f)\right\|_{p} \leqslant C_{\ell, p} K_{\Delta, \ell}\left(f, t^{2 \ell}\right)_{p}
$$

follows directly from (3), which, as indicated in Section 1, was proved in [DR]. Hence it remains to prove the lower estimate

$$
\left\|f-B_{\ell, t}(f)\right\|_{p} \geqslant C_{\ell, p} K_{\Delta, \ell}\left(f, t^{2 \ell}\right)_{p} .
$$

Lemma 3 implies that there is a number $\mu=\mu(\ell, d)>1$ such that for $u>\mu$,

$$
\begin{equation*}
\left|m_{\ell}(u)\right| \leqslant \frac{1}{2} \tag{16}
\end{equation*}
$$

We will keep this special number μ throughout the proof.
Let η be a C^{∞}-function on $[0, \infty)$ with the properties that $\eta(x)=0$ for $x>2, \eta(x)=1$ for $0 \leqslant x \leqslant 1$, and $0 \leqslant \eta(x) \leqslant 1$ for all $x \in[0, \infty)$. For $t>0$, we define the operator V_{t} by

$$
\begin{equation*}
\left(V_{t}(f)\right)^{\wedge}(\xi)=\eta(t|\xi|) \widehat{f}(\xi) \tag{17}
\end{equation*}
$$

where $f \in L^{p}\left(\mathbb{R}^{d}\right)$ and $\xi \in \mathbb{R}^{d}$.
According to definition (1), the estimates

$$
\begin{equation*}
\left\|f-V_{t / 2 \mu}(f)\right\|_{p} \leqslant C_{\ell, p}\left\|f-B_{\ell, t}(f)\right\|_{p} \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
t^{2 \ell}\left\|\Delta^{\ell} V_{t / 2 \mu}(f)\right\|_{p} \leqslant C_{\ell, p}\left\|f-B_{\ell, t}(f)\right\|_{p} \tag{19}
\end{equation*}
$$

will prove

$$
K_{\Delta, \ell}\left(f, t^{2 \ell}\right)_{p} \leqslant\left\|f-V_{t / 2 \mu}(f)\right\|_{p}+t^{2 \ell}\left\|\Delta^{\ell} V_{t / 2 \mu}(f)\right\|_{p} \leqslant C_{\ell, p}\left\|f-B_{\ell, t}(f)\right\|_{p}
$$

and so complete the proof of Theorem 1. Thus, it has remained to prove (18) and (19).
Let

$$
\begin{equation*}
\phi(u)=\left(1-\eta\left(\frac{u}{2 \mu}\right)\right) \frac{\left(m_{\ell}(u)\right)^{3}}{1-m_{\ell}(u)} \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi(u)=\frac{u^{2 \ell} \eta\left(\frac{u}{2 \mu}\right)}{A_{\ell}(u)} \tag{21}
\end{equation*}
$$

with $A_{\ell}(u)$ and $m_{\ell}(u)$ the same as in Lemma 2. For $t>0$, we define two operators Φ_{t} and Ψ_{t} as follows:

$$
\begin{align*}
& \left(\Phi_{t}(f)\right)^{\wedge}(\xi):=\phi(t|\xi|) \hat{f}(\xi) \\
& \left(\Psi_{t}(f)\right)^{\wedge}(\xi):=\psi(t|\xi|) \hat{f}(\xi) \tag{22}
\end{align*}
$$

It follows from (16), (20) and Lemma 3 that for $u \geqslant 0$ and $0 \leqslant j \leqslant d+1$,

$$
\begin{equation*}
\left|\phi^{(j)}(u)\right| \leqslant C_{\ell, d}\left(\frac{1}{u+1}\right)^{\frac{3(d+1)}{2}} \tag{23}
\end{equation*}
$$

On the other hand, by (9) and a straightforward computation, we obtain that for $u \geqslant \frac{\pi}{2}$

$$
\begin{equation*}
A_{\ell}(u) \geqslant C_{\ell, d} \int_{0}^{\frac{2}{3}}\left(\sin \frac{u v}{2}\right)^{2 \ell} d v \geqslant C_{\ell, d}^{\prime}>0 \tag{24}
\end{equation*}
$$

and for $0<u<\frac{\pi}{2}$

$$
\begin{equation*}
\frac{A_{\ell}(u)}{u^{2 \ell}} \geqslant C_{\ell, d} \frac{1}{u^{2 \ell}} \int_{0}^{1}\left(1-v^{2}\right)^{\frac{d-1}{2}}(u v)^{2 \ell} d v \geqslant C_{\ell, d}>0, \tag{25}
\end{equation*}
$$

which, together with (21), implies that

$$
\begin{equation*}
\psi \in C^{\infty}[0, \infty) \text { and } \operatorname{supp} \psi \subset[0,4 \mu] \tag{26}
\end{equation*}
$$

Now invoking Lemma 4 three times, with $a=\eta, \phi$ and ψ, respectively, in view of (23), (26) and the fact that η is a C^{∞}-function with compact support, we obtain from (17) and (22) that for $1 \leqslant p \leqslant \infty$,

$$
\begin{equation*}
\sup _{t>0}\left\|V_{t}(f)\right\|_{p}+\sup _{t>0}\left\|\Phi_{t}(f)\right\|_{p}+\sup _{t>0}\left\|\Psi_{t}(f)\right\|_{p} \leqslant C_{p}\|f\|_{p} \tag{27}
\end{equation*}
$$

We claim that (18) and (19) follow from (27). In fact, from the identity

$$
\left(f-V_{t / 2 \mu}(f)\right)^{\wedge}(\xi)=W(t \xi)\left(f-B_{\ell, t}(f)\right)^{\wedge}(\xi)
$$

where

$$
W(\xi):=\left(1-\eta\left(\frac{|\xi|}{2 \mu}\right)\right)\left(\frac{\left(m_{\ell}(|\xi|)\right)^{3}}{1-m_{\ell}(|\xi|)}+1+m_{\ell}(|\xi|)+\left(m_{\ell}(|\xi|)\right)^{2}\right),
$$

it follows that

$$
f-V_{t / 2 \mu}(f)=\Phi_{t}\left(f-B_{\ell, t}(f)\right)+\left(I-V_{t / 2 \mu}\right)\left(I+B_{\ell, t}+B_{\ell, t}^{2}\right)\left(f-B_{\ell, t}(f)\right),
$$

where I denotes the identity operator on $L^{p}\left(\mathbb{R}^{d}\right)$. This, together with (27) and the fact that $\left\|B_{\ell, t}\right\|_{(p, p)} \leqslant C_{\ell}$, gives (18).

Similarly, from the identities

$$
\begin{aligned}
\left(t^{2 \ell} \Delta^{\ell} V_{t / 2 \mu}(f)\right)^{\wedge}(\xi) & =\frac{(-1)^{\ell} t^{2 \ell}|\xi|^{2 \ell} \eta\left(\frac{t|\xi|}{2 \mu}\right)}{1-m_{\ell}(t|\xi|)}\left(f-B_{\ell, t}(f)\right)^{\wedge}(\xi) \\
& =(-1)^{\ell} \Psi_{t}\left(f-B_{\ell, t}(f)\right)^{\wedge}(\xi),
\end{aligned}
$$

it follows that

$$
t^{2 \ell} \Delta^{\ell} V_{t / 2 \mu}(f)=(-1)^{\ell} \Psi_{t}\left(f-B_{\ell, t}(f)\right)
$$

which, again by (27), implies (19). This completes the proof.

Acknowledgements

The authors would like to thank Professor Z. Ditzian for supplying them with some preprints of his excellent papers on K-functionals, which gave a better perspective on their proof. The authors would also like to thank the anonymous referee for pointing out some misprints of their paper.

References

[An-As-R] G.E. Andrews, R. Askey, R. Roy, Special Functions, Encyclopedia of Mathematics and its Applications, vol. 71, Cambridge University Press, Cambridge, 1999.
[Di1] Z. Ditzian, Fractional derivatives and best approximation, Acta Math. Hungar. 81 (1998) 323-348.
[Di2] Z. Ditzian, Measure of smoothness related to the Laplacian, Trans. Amer. Math. Soc. 326 (1991) 407-422.
[Di-Iv] Z. Ditzian, K. Ivanov, Strong converse inequalities, J. Anal. Math. 61 (1993) 61-111.
[DR] Z. Ditzian, K. Runovskii, Averages and K-functionals related to the Laplacian, J. Approx. Theory 97 (1999) 113-139.
[St] E.M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, NJ, 1970.
[To] V. Totik, Approximation by Bernstein polynomials, Amer. J. Math. 116 (1994) 995-1018.

[^0]: * Corresponding author. Department of Mathematical Statistical Sciences, University of Alberta, CAB 632, Edmonton, Alberta, Canada T6G 2G1.

 E-mail addresses: dfeng@math.ualberta.ca (Feng Dai), wangky@bnu.edu.cn (Kunyang Wang).
 ${ }^{1}$ Partially supported by NNSF of China under the grant \# 10071007. The first author was also supported by University of Alberta Start-up Fund.

