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Abstract

ForR? or T4, a strong converse inequality of type A (in the terminology of Ditzian and Ivanov
(J. Anal. Math. 61 (1993) 61)) is obtained for the high order averages on balls aKeftimetionals
generated by the high order Laplacian, which answers a problem raised by Ditzian and Runovskii (J.
Approx. Theory 97 (1999) 113).
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction and main result

Given a functionf € L(R?), its Fourier transform is defined by

&= / foe*dx, EeRY
Rd
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For a positive integet, the ¢th order Laplaciam\¢ is defined, in a distributional sense, by
(AP = D IEP T ).

Associated with the operatax’, there is a-functional
Kao(fo 129y = inf{ll f —gll, + 1218, : g, A'g € LPRD), (€

wherer > 0, 1<p<oo and| - ||, denotes the usudl”-norm onR?.
Let V,; denote the volume of the unit ball 8. For ¢+ > 0 and a locally integrable
functionf, we define the averagg () by

B/(f)(x) = fx+u)du

14Vy /{ueRd: u| <t}

and thefth order averag®, ;(f) (for a given positive integet) by

¢
-2 2
Bri(N)x) = o ) (=1 ( . ) Bji(f)(@). ey
- —J
(%)=
We remark that fo¢ > 1 the operatoB, ; was first introduced by Ditzian and Runovskii
in [DR, p. 117, (2.6)].
For more background information we refer[i1,Di2,DR,Di-Iv,TQ].

Our main goal in this paper is to prove the following strong converse inequality of type
A (in the terminology ofDi-Iv]), which was conjectured ifDR, p. 138].

Theorem 1. Let¢ € N, 1<p<oo and f € L?(RY). Then
Lf = Bea (Nl ~ Ko (f, 1%,

wherer > 0and
A(f, 1) = B(f,1)

means that there is @ > 0, independent of f and such that

CrA(f,)<B(f,H<CA(f, 1).

Theoreml for ¢ = 1 was proved iffDR, p. 133, Theorem 6.13nd ford = 1, £ small,
as it was indicated in [DR, p. 138], can be obtained by following the technique developed
in [Di-lv]. For £>2 andd>2, the following strong converse inequality of type B (in the
terminology of[Di-Iv]) was obtained in[DR, p. 127, Theorem 4.8 and p. 131, Theorem
5.7]:

Kaolfs%9p = If = Bea(H)llp + If = Beap(Hllp, 1<p<oo 3

for somep > 1. The proof of our Theorem 1 will be based on this equivalence.
We remark that with a slight modification of the proof below a similar result for the
periodic case can also be obtained.
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2. Basic lemmas
The following lemma can be easily obtained by a straightforward computation.

Lemma 1. Lety g 1)(x) denote the characteristic function of the unit ball
B(O,1):=f{x=(x1,....xs) € RY: x? ...+ x3<1)},

V; denote the volume @ (0, 1) and let] (x) = Vid %B(0.1)(x). Then

1
Tx) = yd/ cosul) (L — u?) 7 du 4)
0
with
1 _ -1
Y, = 1—ud% du) . 5
7= ( /0 (1-u)'7 du) 5)
Lemma 2. LetB, ; be defined b§2)and! (x) the same as in LemniaThenforf € L(RY),
Be () (x) = my(t]x]) F (x), 6)
where
—2 < 20\ ~
m(lx)) = @ > (z B j) 1(jx) @
¢ ) j=1
=1— A¢(Ix)), 8)
14 1
Ag(|x|)=yd%/ (1 —u?) 7 (sin %)% du (9)
(%)%

andy, is given by(5).

Proof. Fort > 0, we write

1 x
Ii(x) = t—dl(?)-

Then from definition (2), it follows that

B _ 2y yi( * I
z,z(f)(x)—@ _Zl<— ) <€_j><f* j0 (),
L J=

which implies (6) and (7). Substituting (4) into (7) yields

d-1

2y, & 2 1
me(lx]) = 4 Z(—l)"( )/ cos(julx) (L~ u?) du, (10)
a7
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which, together with the following identity

2
(sin %)2‘3 Q +7 Z( 1)/ < ]> CcoS jx,

gives (8) and (9). This completes the proofl]

Lemma 3. Letm,(u) be the same as in Lemr2aThen forj € Z andu>0,
d+1
2

‘(%)jmz(u) )7

whereC, ; > Ois independent of u.

SCL/’(

Proof. By identity (10), it suffices to show that fgre Z andu >0,

d\i (1 o d=1 1\
— _ e <C.(——
‘(du) fo cos(uv)(1— v3) ‘7 dv \CJ(HI) . (11)
We use formula (4.7.5) dAn-As-R, p. 204]to obtain that
1 d+1\ Je@)
/o cos(uv)(1— vz) T av =27 fl“( er ) 2% , (12)
u

whereJ, («) denotes the Bessel function of the first kind of ordeNow (11) is a conse-
quence of (12) and the following well-known estimates on Bessel functions:

d
S ) =~ g1 (w), - [An-ASR, (4.6.2), p. 202],
u

Ty() = 0(%) foru=0 [An-As-R, (4.8.5), p. 209],
(u+1)2
Jy(uw)=0w* asu— 0 [An-As-R, (4.7.6), p. 218].

This concludes the proof. [J

Lemma 4. Suppose that a is @°°-function defined off0, co) with the property that for
u>0and0<;j<d + 1,

‘(di) a(u) <C(a)(l+u>d+l. (13)
Fort > 0, define the operatof;, in a distributional senseyy

(LNHNE =a@lEDf (O, EeR
Then forl<p<oo and f € L?(R%),

supll Ty (M p<Cpall fllp-

t>0
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This lemma is well known (s€f&t]), but for the sake of completeness, we give its proof
here.

Proof. Let
K(x) = / (|2 de. (14)
Rd
Since

Ti()(x) = [ * Ki(x),
with
K = = k5,
t t
it is sufficient to prove

Kl 1y < 00 (15)

By (14), we get fory = (y1, ..., 7,) € Z4,

(07K = [ e (52) @iz ae,

which, by (13), implies

|xVK<x)|<cf 4
ai (L1 27T

with [y| = y1 + -+ + 7,<d + 1. Now taking the supremum over allwith |y| = d + 1
yields

C
KIS —7>
|x|d+1

which, together with the fact that e C(R?), implies (15) and so completes the proof.
O

3. Proof of Theorem 1

The upper estimate

If = Bes()lp<CrpKne(f, 1%,

follows directly from (3), which, as indicated in Section 1, was provefDR]. Hence it
remains to prove the lower estimate

If = Bea(P)llp=CepKno(f, 1%,
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Lemma 3 implies that there is a numhee (¢, d) > 1 such that fou > u,

1
Ime)l< 5 (16)

We will keep this special numberthroughout the proof.
Lety be aC*-function on[0, co) with the properties that(x) = 0forx > 2,n(x) =1
for 0<x <1, and G<n(x)<1 forallx € [0, c0). For > 0, we define the operatdf; by

Vi (PNNE) = n|ED FO), (17)

wheref € LP(R?) and¢é € R?.
According to definition (1), the estimates

If = VijzulHDllp<Cepll f = Beo(Pllp (18)
and

P AY, 20 DIlp<Cepll f = Ber(Pllp (19)
will prove

Ko (f. 12, <IE = Vipou(Ollp + 20 A Ve jou (O p<Crpll f — B ()l

and so complete the proof of Theorem 1. Thus, it has remained to prove (18) and (19).
Let

u N\ (me(u))®
du) = (1 - ﬂ(ﬂ))m (20)
and
w?n(zp)
by = — B (21)

with A¢(u) andm,(«) the same as in Lemnfa For ¢ >0, we define two operato, and
¥, as follows:

(20)" @ :=gwiedf©,
(vn) @ =vaiEnfe. 22)

It follows from (16), (20) and Lemma 3 that faz>0 and 0<j <d + 1,

3(d+1)
2

¢ ()| <Cera( (23)

u+1
On the other hand, by (9) and a straightforward computation, we obtain thapHr

2
3
Ag(u)x[,d/ (sin %)Zed@cgd ~0 (24)
0
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and for O< u < g

A 1 1 _
ZSZ-) Z2Ced—y; _/ (1—)T @) dv=Cq > 0, (25)
u u 0

which, together with (21), implies that
WY € C*[0,00) and supps C [0, 4u]. (26)

Now invoking Lemma 4 three times, with= 7, ¢ andy, respectively, in view of (23),
(26) and the fact that is a C°°-function with compact support, we obtain from (17) and
(22) that for K p<oo,

sup Vi ()l +sup P (llp + su(g)ll‘x”z(f)llpécpllfllp- (27)

t>0 t>0 >

We claim that (18) and (19) follow from (27). In fact, from the identity
(f = Vijau(£)" (&) = WO = Bea (/)N
where

€] )( (me(|1E)))3

. a3l 2
W& = (1= 1)) (1= gy + 1 meE + me1)?),

it follows that
f=Vipou(f) =9 (f — Be. (f)+ U = Vi) + B s + Bgz’[)(f — By (f)),

wherel denotes the identity operator @rf (R?). This, together with (27) and the fact that
”Bl,l||(p,p)<C€y giVES (18)
Similarly, from the identities

A DD
(P82 5) O = s (= B ©

= (=) W (f — Be (N (),

it follows that

ANV jou(f) = (DI — Bea(f)),

which, again by (27), implies (19). This completes the proof.
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